بزرگترین و جامع ترین فروشگاه انواع فایل دانشجویی و دانش اموزی

اطلاعیه فروشگاه

اطلاعیه فروشگاه : در هنگام خرید حتما روی دکمه تکمیل خرید در صفحه بانک کلیک کنید تا پرداخت شما تکمیل شود مراحل پرداخت را تا آخر و دریافت کدپیگیری سفارش انجام دهید ؛ در صورتی که نتوانستید پرداخت الکترونیکی را انجام دهید چند دقیقه صبر کنید و مجددا اقدام کنید و یا از طریق مرورگر دیگری وارد سایت شوید یا اینکه بانک عامل را تغییر دهید.پس از پرداخت موفق لینک دانلود به طور خودکار در اختیار شما قرار میگیرد و به ایمیل شما نیز ارسال میشود. بازدیدکنندگان محترم جهت هر گونه سوال در مورد محصولات با شماره 09178659920 تماس بگیرید مشتریان محترم در صورت ناموفق بودن در خرید با شماره بالا در ارتباط باشید تا فایل مورد نظر ایمیل و ارسال گردد

مقاله در مورد ریاضی صوت و موسیقی

مقاله در مورد ریاضی صوت و موسیقی

لينک پرداخت و دانلود *پايين مطلب*

فرمت فايل:Word (قابل ويرايش و آماده پرينت)

تعداد صفحه11

فهرست مطالب

نگاه فلسفي ارسطو به موسيقي

 

تنيدگي موسيقي در دل رياضيات

 

نغمه و نقره در سازهاي زهي و كوبه اي

 

رياضيات در ايران قديم

 

ریاضیات و موسیقی

 

مشخصترین ترین ارتباط میان موسیقی و ریاضی

 

ریاضیات عقلی در مقابل موسیقی احساسی

 

موسیقی و صوت ، قدرت سحر انگیز ریاضیات ...

 

در این نوشتار مختصر سعی کردیم به طور ساده و نه زیاد تخصصی ؛ به ریشه ریاضی صوت و موسیقی بپردازیم تا ببینیم که این شاخه از علم چه قدرت وصف نا پذیری در توصیف طبیعت دارد ، ابزار های قدرتمند ریاضی که سالها بعد از اختراعشان ما را در توصیف و توجیه پدیده های طبیعی یاری می کنند...
حدود سال 1800 ژان باپتیست فوریه مسئله سریهای مثلثاتی ( که تا قبل از این روی آن بسیار کار شده بود و به دلایلی توسط ژوزف لویی لاگرانژ و سایرین شدیدا مورد انتقاد قرار گرفته بود) را ارائه داد :
هر تابع متناوب را می توان با یک سری مثلثاتی از توابع سینوسی که فرکانسهایشان از نظر هارمونیکی مرتبط هستند نمایش داد...
اما استدلالهای ریاضی فوریه دقیق نبود ، و اشکال عمده ای که بر آن وارد بود تابع متناوبِ نا پیوسته ی موج مربعی بود ؛ چگونه ممکن بود مجموعی از توابع پیوسته سینوسی ، به یک تابع ناپیوسته همگرا شوند؟ یا توابعی که گوشه دارند ، مثل موج مثلثی . واقعا چطور ممکن است؟
ولی واقعا اینگونه هست . به هر حال دانشمندان بزرگ دیگری روی این مسئله کار کردند (که وارد جزئیات نمی شویم) و آن را تکمیل کردند تا این که امروزه سریهای مثلثاتی به نام سری های فوریه خوانده می شوند :
هر تابع متناوب (دارای شرایطی موسوم به شرایط دیریکله) را می توان با مجموع وزن دار هارمونیک های سینوسی نمایش داد...
منظور از وزن ، همان ضرییب (اندازه) تابع سینوسی است. (
A sin(wt+d
A: ضریب یا وزن
w : فرکانس
d: فاز
به مجموعه ی این ضرایب ، ضرایب فوریه تابع می گویند . هر مجموعه از ضرایب فوریه ، تابعی متناوب را به طور یکتا مشخص می کند . (مگر با تغییراتی بسیار جزئی که عملا مهم نیستند.)
در سری فوریه ، یک فرکانس پایه وجود دارد که هارمونیک اصلی خوانده می شود و فرکانس سینوسی های دیگر مضارب صحیحی از این فرکانس پایه خواهند بود. بنابراین فرکانسهای موجود در یک تابع متناوب ، گسسته و همگی مضرب صحیحی از فرکانس پایه هستند ؛ که طیف فرکانسی گسسته نامیده می شود.
تا این لحظه مبحث صرفا ریاضی بود ، حال دو ساز مثل پیانو و فلوت را در نظر بگیرید:
یک نت خاص از هر دو ساز را به صدا در می آوریم، با دیرند و نواک مساوی . اگر نمودار تغییرات فشار آکوستیکی را بر حسب زمان برای دو صوت فوق رسم کنیم ، دقیقا با دو تابع متناوب مواجه می شویم.
البته رسم این نمودار شاید برای عموم مشکل باشد ؛ اما راههایی برای مشاهده هست. تغییرات فشار آکوستیکی ، با یک ترانسدیوسر (مثل میکروفون) به تغییرات یک سیگنال الکتریکی (مثل ولتاژ) بر حسب زمان تبدیل می شود ، که روی اوسیلوسکوپ قابل مشاهده است. یا ساده از آن ، نرم افزارهای ویرایش صوت مثل
Cool Edit Pro هم میتوانند این سیگنالها را نمایش دهند.
گفتیم با دو تابع متناوب مواجه شدیم ، پس طبق نظریه ریاضی سری فوریه می توان این توابع را به سری فوریه بسط داد . اگر این کار را انجام دهیم ( این کار هم از طریق نرم افزار تحلیلی قدرتمندی مثل
MATLAB امکان پذیر است! ) دقیقا می بینیم که فرکانس پایه و فرکانس هارمونیک های بعدی در هر دو صوت حاصل از پیانو و فلوت با هم برابرند. مثلا اگر نت A را به صدا در آوریم فرکانس اولین تابع سینوسی 440 Hz خواهد بود و فرکانس یعدی 880 Hz و ... اما :

 


اشتراک بگذارید:


پرداخت اینترنتی - دانلود سریع - اطمینان از خرید

پرداخت و دانلود

مبلغ قابل پرداخت 3,300 تومان
عملیات پرداخت با همکاری بانک انجام می شود
کدتخفیف:

درصورتیکه برای خرید اینترنتی نیاز به راهنمایی دارید اینجا کلیک کنید


فایل هایی که پس از پرداخت می توانید دانلود کنید

نام فایلحجم فایل
81_647568_6737.zip16.8k





نظرسنجی

نحوه ی آشنایی شما با فروشگاه یونی سل فایل ؟؟؟
کدام یک نیاز شما در این فروشگاه است؟
قیمت های محصولات فروشگاه را چگونه میبینید؟